TRABAJO

GPS

El sistema de posicionamiento global (GPS) es un sistema que permite determinar en todo el mundo la posición de un objeto (una persona, un vehículo) con una precisión de hasta centímetros (si se utiliza GPS diferencial), aunque lo habitual son unos pocos metros de precisión. El sistema fue desarrollado, instalado y empleado por el Departamento. Para determinar las posiciones en el globo, el sistema GPS está constituido por 24 satélites y utiliza la trilateración.
El GPS funciona mediante una red de 24 satélites en órbita sobre el planeta tierra, a 20 200 km de altura, con trayectorias sincronizadas para cubrir toda la superficie de la Tierra. Cuando se desea determinar la posición, el receptor que se utiliza para ello localiza automáticamente como mínimo cuatro satélites de la red, de los que recibe unas señales indicando la identificación y la hora del reloj de cada uno de ellos. Con base en estas señales, el aparato sincroniza el reloj del GPS y calcula el tiempo que tardan en llegar las señales al equipo, y de tal modo mide la distancia al satélite mediante el método de trilateración inversa, la cual se basa en determinar la distancia de cada satélite respecto al punto de medición. Conocidas las distancias, se determina fácilmente la propia posición relativa respecto a los satélites. Conociendo además las coordenadas o posición de cada uno de ellos por la señal que emiten, se obtiene la posición absoluta o coordenada reales del punto de medición. También se consigue una exactitud extrema en el reloj del GPS, similar a la de los relojes atómicos que llevan a bordo cada uno de los satélites.
La antigua Unión Soviética construyó un sistema similar llamado GLONASS, ahora gestionado por la Federación Rusa.
Actualmente la Unión Europea está desarrollando su propio sistema de posicionamiento por satélite, denominado Galileo.
A su vez, la República Popular China está implementando su propio sistema de navegación, el denominado Beidou, prevén que cuente con 12 y 14 satélites entre 2011 y 2015. Para 2020, ya plenamente operativo deberá contar con 30 satélites. En abril de 2011 tenían ocho en órbita.


CARACTERÍSTICAS TÉCNICAS Y PRESTACIONES

 

El Sistema Global de Navegación por Satélite lo componen: Segmento espacial
·        Satélites en la constelación: 24 (4 × 6 órbitas)
·        Altitud: 20 200 km
·        Período: 11 h 58 min (12 horas sidéreas)
·        Inclinación: 55 grados (respecto al ecuador terrestre).
·        Vida útil: 7,5 años
·        Segmento de control (estaciones terrestres)
·        Estación principal: 1
·        Antena de tierra: 4
·        Estación monitora (de seguimiento): 5, Colorado SpringsHawáiKwajaleinIsla de Ascensión e Isla de Diego García
·        Señal RF
·        Frecuencia portadora:
·        Civil – 1575,42 MHz (L1). Utiliza el Código de Adquisición Aproximativa (C/A).
·        Militar – 1227,60 MHz (L2). Utiliza el Código de Precisión (P), cifrado.
·        Nivel de potencia de la señal: –160 dBW (en superficie tierra).
·        Polarización: circular dextrógira.
·        Precisión
·        Posición: oficialmente aproximadamente 15 m (en el 95 % del tiempo). En la realidad un GPS portátil mono frecuencia de 12 canales paralelos ofrece una precisión de entre 2,5 y 3 metros en más del 95 % del tiempo. Con el WAAS / EGNOS / MSAS activado, la precisión asciende de 1 a 2 metros.
·        Hora: 1 ns
·        Cobertura: mundial
·        Capacidad de usuarios: ilimitada
·        Sistema de coordenadas:
·        Sistema Geodésico Mundial 1984 (WGS84).
·        Centrado en la Tierra, fijo.
·        Integridad: tiempo de notificación de 15 minutos o mayor. No es suficiente para la aviación civil.
·        Disponibilidad: 24 satélites y 21 satélites. No es suficiente como medio primario de navegación.



SEÑAL GPS

 

Cada satélite GPS emite continuamente un mensaje de navegación a 50 bits por segundo en la frecuencia transportadora de microondas de aproximadamente 1.600 MHz. La radio FM, en comparación, se emite a entre 87,5 y 108,0 MHz y las redes Wi-Fi funcionan a alrededor de 5000 MHz y 2400 MHz. Más concretamente, todos los satélites emiten a 1575,42 MHz (esta es la señal L1) y 1227,6 MHz (la señal L2).
La señal GPS proporciona la “hora de la semana” precisa de acuerdo con el reloj atómico a bordo del satélite, el número de semana GPS y un informe de estado para el satélite de manera que puede deducirse si es defectuoso. Cada transmisión dura 30 segundos y lleva 1500 bits de datos codificados. Esta pequeña cantidad de datos está codificada con una secuencia pseudoaleatoria (PRN) de alta velocidad que es diferente para cada satélite. Los receptores GPS conocen los códigos PRN de cada satélite y por ello no sólo puede decodificar la señal sino que la pueden distinguir entre diferentes satélites.
Las transmisiones son cronometradas para empezar de forma precisa en el minuto y en el medio minuto tal como indique el reloj atómico del satélite. La primera parte de la señal GPS indica al receptor la relación entre el reloj del satélite y la hora GPS. La siguiente serie de datos proporciona al receptor información de órbita precisa del satélite.


EVOLUCION DELSISTEMA GPS
·        Incorporación de una nueva señal en L2 para uso civil.
·        Adición de una tercera señal civil (L5): 1176,45 MHz
·        Protección y disponibilidad de una de las dos nuevas señales para servicios de Seguridad Para la Vida (SOL).
·        Mejora en la estructura de señales.
·        Incremento en la potencia de señal (L5 tendrá un nivel de potencia de –154 dB).
·        Mejora en la precisión (1-5 m).
·        Aumento en el número de estaciones de monitorización: 12 (el doble)
·        Permitir mejor interoperabilidad con la frecuencia L1 de Galileo
El programa GPS III persigue el objetivo de garantizar que el GPS satisfaga requisitos militares y civiles previstos para los próximos 30 años. Este programa se está desarrollando para utilizar un enfoque en tres etapas (una de las etapas de transición es el GPS II); muy flexible, permite cambios futuros y reduce riesgos. El desarrollo de satélites GPS II comenzó en 2005, y el primero de ellos estará disponible para su lanzamiento en 2012, con el objetivo de lograr la transición completa de GPS III en 2017. Los desafíos son los siguientes:
·        Representar los requisitos de usuarios, tanto civiles como militares, en cuanto a GPS.
·        Limitar los requisitos GPS III dentro de los objetivos operacionales.
·        Proporcionar flexibilidad que permita cambios futuros para satisfacer requisitos de los usuarios hasta 2030.
·        Proporcionar solidez para la creciente dependencia en la determinación de posición y de hora precisa como servicio internacional.
El sistema ha evolucionado y de él han derivado nuevos sistemas de posicionamiento IPS-2 se refiere a Inercial Positioning System, sistema de posicionamiento inercial, un sistema de captura de datos, que permite al usuario realizar mediciones a tiempo real y en movimiento, el llamado Mobile Mapping. Este sistema obtiene cartografía móvil 3D basándose en un aparato que recoge un escáner láser, un sensor inercial, sistema GNSS y un odómetro a bordo de un vehículo. Se consiguen grandes precisiones, gracias a las tres tecnologías de posicionamiento: IMU + GNSS + odómetro.

FUNCIONAMIENTO

La información que es útil al receptor GPS para determinar su posición se llama efemérides. En este caso cada satélite emite sus propias efemérides, en la que se incluye la salud del satélite (si debe o no ser considerado para la toma de la posición), su posición en el espacio, su hora atómica, información doppler, etc.
Mediante la trilateración se determina la posición del receptor:
·        Cada satélite indica que el receptor se encuentra en un punto en la superficie de la esfera, con centro en el propio satélite y de radio la distancia total hasta el receptor.
·        Obteniendo información de dos satélites queda determinada una circunferencia que resulta cuando se intersecan las dos esferas en algún punto de la cual se encuentra el receptor.
·        Teniendo información de un tercer satélite, se elimina el inconveniente de la falta de sincronización entre los relojes de los receptores GPS y los relojes de los satélites. Y es en este momento cuando el receptor GPS puede determinar una posición 3D exacta (latitud, longitud y altitud).

FIABILIDAD DE LOS DATOS

Debido al carácter militar del sistema GPS, el Departamento de Defensa de los EE. UU. se reservaba la posibilidad de incluir un cierto grado de error aleatorio, que podía variar de los 15 a los 100 m. La llamada disponibilidad selectiva (S/A) fue eliminada el 2 de mayo de 2000. Aunque actualmente no aplique tal error inducido, la precisión intrínseca del sistema GPS depende del número de satélites visibles en un momento y posición determinados.
Si se capta la señal de entre siete y nueve satélites, y si éstos están en una geometría adecuada (están dispersos), pueden obtenerse precisiones inferiores a 2,5 metros en el 95 % del tiempo. Si se activa el sistema DGPS llamado SBAS (WAAS-EGNOS-MSAS), la precisión mejora siendo inferior a un metro en el 97 % de los casos. Estos sistemas SBAS no se aplican en Sudamérica, ya que esa zona no cuenta con este tipo de satélites geoestacionarios. La funcionabilidad de los satélites es por medio de triangulación de posiciones para proporcionar la posición exacta de los receptores (celulares, vehículos, etc.).

FUENTE DE ERROR

La posición calculada por un receptor GPS requiere en el instante actual, la posición del satélite y el retraso medido de la señal recibida. La precisión es dependiente de la posición y el retraso de la señal.
Al introducir el atraso, el receptor compara una serie de bits (unidad binaria) recibida del satélite con una versión interna. Cuando se comparan los límites de la serie, las electrónicas pueden meter la diferencia a 1 % de un tiempo BIT, o aproximadamente 10 nanosegundos por el código C/A. Desde entonces las señales GPS se propagan a la velocidad de luz, que representa un error de 3 metros. Este es el error mínimo posible usando solamente la señal GPS C/A.
La precisión de la posición se mejora con una señal P(Y). Al presumir la misma precisión de 1 % de tiempo BIT, la señal P(Y) (alta frecuencia) resulta en una precisión de más o menos 30 centímetros. Los errores en las electrónicas son una de las varias razones que perjudican la precisión (ver la tabla).
Puede también mejorarse la precisión, incluso de los receptores GPS estándares (no militares) mediante software y técnicas de tiempo real. Esto ha sido puesto a prueba sobre un sistema global de navegación satelital (GNSS) como es el NAVSTAR-GPS. La propuesta se basó en el desarrollo de un sistema de posicionamiento relativo de precisión dotado de receptores de bajo costo. La contribución se dio por el desarrollo de una metodología y técnicas para el tratamiento de información que proviene de los receptores.






Fuente
Efecto
± 3 m
± 2,5 m
Reloj satelital
± 2 m
Distorsión multibandas
± 1 m
Troposfera
± 0,5 m
Errores numéricos
± 1 m o menos
·        Retraso de la señal en la ionosfera y la troposfera.
·        Señal multirruta, producida por el rebote de la señal en edificios y montañas cercanos.
·        Errores de orbitales, donde los datos de la órbita del satélite no son completamente precisos.
·        Número de satélites visibles.
·        Geometría de los satélites visibles.
·        Errores locales en el reloj del GPS.

Factores que Afectan la Calidad de los Datos:

Errores Propios del Satélite.
Se refiere a los errores que afectan la calidad de los resultados obtenidos en una medición G.P.S.
Errores orbitales (efemérides): Debido a que los satélites no siguen una órbita kepleriana normal por causa de las perturbaciones, se requieren mejores estimadores de órbitas, lo que implica un proceso que está obstaculizado por conocimientos insuficientes de las fuerzas que actúan sobre los satélites. Estos errores afectan la determinación de la posición del satélite en un instante determinado con respecto a un sistema de referencia seleccionado. Para disminuir el error en vez de utilizar las efemérides captadas en el receptor se utilizan efemérides precisas calculadas por el IGS y NASA días después de la medición.
Errores del reloj: Se refieren a las variaciones en el sistema de tiempo del reloj del satélite, producidas por la deriva propia de los osciladores y las originadas por la acción de los efectos relativísticos. Dichos errores conllevan a que exista un diferencial entre el sistema de tiempo del satélite y del sistema G.P.S., el cual no va a ser constante para todos los satélites sino que varía de uno a otro, debido a que la frecuencia estándar de los osciladores de los satélites tiene valores definidos para cada satélite.
Errores de la configuración geométrica: las incertidumbres en un posicionamiento son consecuencia de los errores de las distancias asociadas con las geometrías de los satélites utilizados, cuatro o más. El efecto de la geometría queda expresado por los parámetros de la denominada Dilución de Precisión Geométrica (GDOP), el cual considera los tres parámetros de posición tridimensional y tiempo. El valor de GDOP es una medida compuesta que refleja la influencia de la constelación de satélites sobre la precisión combinada de las estimaciones de un tiempo y posición de la estación.
Al efecto se consideran: PDOP: Dilución de precisión para la posición. HDOP: Dilución de precisión para la posición. VDOP: Dilución de precisión vertical. TDOP: Dilución de precisión para el tiempo.
Errores Provenientes del Medio de Propagación.
Errores de refracción ionosférica: En la frecuencia GPS, el rango del error por refracción en la ionósfera va desde 50 metros (máxima, al mediodía, un satélite cerca del horizonte) hasta 1 metro (mínima, en la noche, un satélite en el zenit). Debido a que la refracción ionosférica depende de la frecuencia, el efecto es estimado comparando mediciones realizadas en dos frecuencias diferentes (L1=1575.42 MHz. y L2=1227.60 MHz.). Usando dos estaciones, una con coordenadas conocidas. Podemos corregir errores de tiempo. El retardo del tiempo de viaje en la ionosfera depende de la densidad de electrones a lo largo del camino de la señal y de la frecuencia de la misma. Una fuente influyente sobre la densidad de los electrones es la densidad solar y el campo magnético terrestre. Por lo tanto la refracción ionosférica depende de la hora y del sitio de medición.
Errores de refracción troposférica: La refracción troposférica produce errores comprendidos entre 2 metros (satélite en el zenit) y 25 metros (satélite a 5º de elevación). La refracción troposférica es independiente de la frecuencia, por lo tanto una medición de dos frecuencias no puede determinar el efecto pero este error puede ser compensado usando modelos troposféricos.

Multipath: Es el fenómeno en el cual la señal llega por dos o más trayectorias diferentes. La diferencia en las longitudes de las trayectorias causa interferencia de las señales al ser recibidas. El multipath se nota usualmente cuando se está midiendo cerca de superficies reflectoras, para minimizar sus efectos se utiliza una antena capaz de hacer discriminaciones en contra de las señales que llegan de diferentes direcciones.
Errores en la Recepción.
Estos errores dependen tanto del modo de medición como del tipo de receptor que se utiliza.
Ruido: Como la desviación estándar del ruido en la medición es proporcional a la longitud de onda en el código. El ruido en las medidas de fase de la portadora condiciona la cantidad de datos y el tiempo de seguimiento requeridos para alcanzar un determinado nivel de precisión, resultando crucial el seguimiento y las mediciones continuas para asegurar dicha precisión.
Centro de fase de la antena: Este puede cambiar en función del ángulo de elevación del azimut (figura 15). El aparente centro de fase eléctrico de la antena GPS es el punto preciso de navegación para trabajos relativos. Si el error del centro de fase de la antena es común para todos los puntos durante la medición, estos se cancelan. En mediciones relativas se usan todas las antenas de la red alineadas en una misma dirección (usualmente el norte magnético) para que el movimiento del centro de fase de la antena sea común y se cancele con una primera aproximación.

VOCABULARIO EN GPS

·        BRG (bearing): Rumbo estimado entre dos puntos de referencia (waypoints)
·        CMG (Course Made Good): rumbo entre el punto de partida y la posición actual
·        EPE (Estimated Position Error): margen de error estimado por el receptor
·        ETE (Estimated Time Enroute): tiempo estimado entre dos waypoints
·        DOP (Dilution of Precision): medida de la precisión de las coordenadas obtenidas por GPS, según la distribución de los satélites, disponibilidad de ellos...
·        ETA (Estimated Time to Arrival): hora estimada de llegada al destino


INTEGRACIÓN CON TELEFONÍA MÓVIL

 

Actualmente dentro del mercado de la telefonía móvil la tendencia es la de integrar, por parte de los fabricantes, la tecnología GPS dentro de sus dispositivos. El uso y masificación del GPS está particularmente extendido en los teléfonos móviles smartphone, lo que ha hecho surgir todo un ecosistema de software para este tipo de dispositivos, así como nuevos modelos de negocios que van desde el uso del terminal móvil para la navegación tradicional punto-a-punto hasta la prestación de los llamados Servicios Basados en la Localización (LBS).
Un buen ejemplo del uso del GPS en la telefonía móvil son las aplicaciones que permiten conocer la posición de amigos cercanos sobre un mapa base. Para ello basta con tener la aplicación respectiva para la plataforma deseada (AndroidBadaIOSWPSymbian) y permitir ser localizado por otros.


APLICACIONES CIVILES Y MILITARES DEL GPS

    MilitaresTopografía y geodesia.
·        Construcción (Nivelación de terrenos, cortes de talud, tendido de tuberías, etc).
·        Localización agrícola (agricultura de precisión), ganadera y de fauna.
·        Salvamento y rescate.
·        Deporte, acampada y ocio.
·        A.P.R.S. Aplicación parecida a la gestión de flotas, en modo abierto para Radioaficionados
·        Para localización de enfermos, discapacitados y menores.
·        Aplicaciones científicas en trabajos de campo (ver geomática).
·        Geocaching, actividad deportiva consistente en buscar "tesoros" escondidos por otros usuarios.
·        Para rastreo y recuperación de vehículos.
·        Navegación deportiva.
·        Deportes aéreos: parapenteala deltaplaneadores, etc.
·        Existe quien dibuja usando tracks o juega utilizando el movimiento como cursor (común en los GPS Garmin).
·        Sistemas de gestión y seguridad de flotas.
·        Navegación terrestre, aérea y marítima.
·        Guiado de misiles y proyectiles de diverso tipo.
·        Búsqueda y rescate.
·        Reconocimiento y cartografía.

·        Detección de detonaciones nucleares.

No hay comentarios:

Publicar un comentario